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Abstract
We study certain solutions (TE-polarized electromagnetic waves) of the
Helmholtz equation on the line describing waves propagating in a nonlinear
three-layer structure consisting of a film surrounded by semi-infinite media. All
three media are assumed to be lossless, nonmagnetic, isotropic and exhibiting a
local Kerr-type dielectric nonlinearity. The linear component of the permittivity
is modelled by a continuous real-valued function of the transverse coordinate.
We show that the solution of the Helmholtz equation in the form of a TE-
polarized electromagnetic wave exists and can be obtained by iterating the
equivalent Volterra equation. The associated dispersion equation has a simple
root (if the semi-infinite media are linear and if the nonlinearity parameter of
the film is sufficiently small) that uniquely determines this solution.

PACS number: 42.65.Tg

1. Introduction

Planar optical waveguides formed by one or several layers of Kerr-type nonlinear media
find broad applications in various optical systems of signal processing [1, 2]. Most of the
publications consider the permittivity εf = ε̄f + af | �E|2 of the central layer (film) with ε̄f

being constant [1, 2]. In this paper we assume that ε̄f = ε̄f (z) is a real-valued continuous
function of the transverse coordinate z. Even if we do not take into account the physical
applications ([1], pp 257–279) of such a formulation of the problem, the case ε̄f = ε̄f (z) is of
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independent interest from the viewpoint of mathematical physics. In the linear case (af = 0),
the study of the wave propagation in a layered dielectric is reduced in [3] to a self-adjoint
boundary eigenvalue problem. In this paper, we consider waves propagating in a three-layer
structure formed by the film situated between two semi-infinite nonlinear media (substrate s and
cladding c) with the permittivities εν = ε̄ν + aν| �E|2 (ν = s, c), where εν and aν are real and ε̄ν

do not depend on z. We will show that in this case, under certain assumptions, the solution to
the Helmholtz equation (3) in the form of a TE-polarized electromagnetic wave exists and can
be obtained by iterating the equivalent Volterra equation. We also obtain a dispersion equation
for determination of longitudinal wavenumbers of eigenwaves propagating in the nonlinear
structure under study; all quantities that enter the dispersion equation are determined in terms
of solutions to the Volterra equation.

2. Formulation

In [4] we investigated the propagation of TE-waves in a nonlinear lossless isotropic three-layer
dielectric waveguide with constant εν . We obtained the conditions for the existence of certain
solutions ([4], section 3). In this paper we continue the analysis of [5] by considering a
structure with the permittivity

k2
0ε(z) =




ε̄s + as| �E|2 z < 0

ε̄f (z) + af | �E|2 0 � z � d

ε̄c + ac| �E|2 z > d.

(1)

Here, �E is the electric field in the layers and k0 = ω
c

is the wavenumber of the free space. The
geometry of the problem corresponds to the case considered in [4]. We will look for nontrivial
(particular) solutions to the Maxwell equations, as in [5], in the form of TE-waves

�E = �eyφ(z) ei(k0γ x−ωt) (2)

where �ey = (0, 1, 0)T is the unit vector of the axis Oy, and the effective longitudinal
wavenumber n = k0γ in (2) is the spectral parameter of the problem. From representation
(2), it follows (as a result of the substitution into the Maxwell equations, as in [5]) that φ(z)

satisfies the Helmholtz equation

φ′′(z) − (
n2 − k2

0ε(z)
)
φ(z) = 0. (3)

The desired solution of equation (3) must be twice continuously differentiable in each layer
and continuously differentiable (due to the continuity of the tangential components of the
electric and magnetic fields). In addition, the solution must satisfy φ(z) → 0 for |z| → ∞.

Using equations (16)–(19) derived in [4], one can show that in the substrate (ν = s) and
cladding (ν = c), the solution of (3) is given by

φs = qsE0

qs cosh(qsz) −
√

q2
s − as

2 E2
0 sinh(qsz)

(4)

φc = qcEd

qc cosh[qc(z − d)] +
√

q2
c − ac

2 E2
d sinh[qc(z − d)]

(5)

where q2
ν = n2 − ε̄ν , q2

s � as

2 E2
0, q

2
c � ac

2 E2
d , qν (ν = s, c) are either positive or purely

imaginary with a positive imaginary part and E0 > 0 and Ed are real constants. Functions φs

and φc satisfy the boundary conditions at the points z = 0 and z = d , respectively:
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φs(0) = E0 = φf (0)
dφs

dz

∣∣∣∣
z=0

= E0

√
q2

s − as

2
E2

0 = dφf

dz

∣∣∣∣
z=0

(6)

φc(d) = Ed = φf (d)
dφc

dz

∣∣∣∣
z=d

= −Ed

√
q2

c − ac

2
E2

d = dφf

dz

∣∣∣∣
z=d

. (7)

Note that (4), (5) and (6), (7) can be applied for arbitrary sign of parameters aν, ν = s, c, and
remain valid in the linear case (aν = 0, ν = s, c).

For equation (3) considered in the interval 0 < z < d it is known [6] that the Volterra
equation

φf (z) = φ0(z) −
∫ z

0
K(z − t)

[
δ(t) + af φ2

f (t)
]
φf (t) dt δ(z) = ε̄f (z) − ε̄0

f (8)

with the kernel

K(u) = sinh(qf u)

qf

(9)

is equivalent to (3) and function φf (z) satisfies conditions (6). In (9), qf is defined by

qf =
√

n2 − ε̄0
f , the constant ε̄0

f � 1, and

φ0(z) = E0


cosh(qf z) +

√
q2

s − as

2 E2
0

qf

sinh(qf z)


 (10)

is a solution of (3) when ε(z) = ε̄0
f and satisfies boundary conditions (6).

If af = 0, solution φf (z) is represented by a uniformly convergent series

φf (z) =
∞∑

j=0

φj(z) φj (z) = −
∫ z

0
K(z − t)δ(t)φj−1(t) dt j = 1, 2, . . . (11)

where δ(z) is assumed to be continuous. In the nonlinear case (af �= 0), solution φf (z) has the
form of a limit function of a uniformly convergent functional sequence φj(z) (j = 1, 2, . . .):

φj(z) → φf (z) φj (z) = φ0(z) −
∫ z

0
K(z − t)

[
δ(t) + af φ2

j−1(t)
]
φj−1(t) dt

(12)
j = 1, 2, . . . .

Statements (11) and (12) are proved in the following section.
In [5], we have formulated the sufficient condition for a uniform convergence of (12) in

the form

max
0�z�d

{∫ z

0
|K(z − t)| dt[|δ(z)| + |af ||φ0(z)|2]

}
<

4

27
. (13)

We give a proof of this condition in the next section.
Using conditions (7) and evaluating (8), (9), (10) and (12), we obtain the dispersion

equation [5]

F(n, ξ) = 0 (14)

where ξ ∈ A indicates an element of the parameter set A = {
ε̄s , ε̄c, ε̄

0
f , aν, E0, d

}
, and

F(n, ξ) is given by

F(n, ξ) ≡
∫ d

0
K1(d − t)

[
δ(t) + af φ2

f (t)
]
φf (t) dt − dφ0

dz

∣∣∣∣
z=d

− Ed

√
q2

c − ac

2
E2

d (15)
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with Ed = φf (d) according to equation (8) and

K1(u) = cosh(qf u). (16)

If a solution to equation (8) (or (3)) is determined using relationships (12) and (13) (or
(11) in the linear case), then, the dispersion equation (14) is solved for the given function
δ(z) with respect to n or one or several (all) parameters of the set A. Equation (14) implicitly
defines n = n(ξ).

In section 4 we prove, under certain assumptions, the existence of the implicit function
n(ξ) for the case when all parameters are fixed except for one, ξ = af , by applying the implicit
function theorem.

3. Convergence of iterations

3.1. Linear case

First, the case as = ac = af = 0 is considered. We prove that series (11) converges uniformly
on [0, d] to a continuous function φf (z) and estimate the norm ‖φf ‖ = max0�z�d |φf (z)|.
The function φf (z) satisfies (8) with af = 0 and φ0(z) given by (10) with as = 0. Denoting

k(z, t) = δ(t)K(z − t)

we estimate

|φj(z)| � ‖φ0‖ · ‖k‖j zj

j !
(17)

where

‖k‖ = max
0�z,t�d

|k(z, t)| (18)

and

φj(z) =
∫ z

0
k(z, t)φj−1(t) dt j = 1, 2, . . . . (19)

For j = 1 (19) implies

|φ1(z)| � ‖φ0‖ · ‖k‖ · z.

Assuming that (17) is valid, we obtain the inequality

|φj+1(z)| � ‖φ0‖ · ‖k‖j+1 ·
∫ z

0

tj

j !
dt (20)

which yields the required estimate (17). In this case, solution φf (z) to equation (3) is
represented by series (11) which converges uniformly on [0, d] and, according to (17),

|φf (z)| � ‖φ0‖ ·
∞∑

j=0

‖k‖j zj

j !
= ‖φ0‖ ez‖k‖ (21)

which yields the estimate for φf (z) in the space C([0, d])

‖φf ‖ � ‖φ0‖ ed‖k‖. (22)

Combining (11) and (17) we obtain

|φf (z)| � ‖φ0‖ e‖δ‖p(z) p(z) = cosh(qf z) − 1

q2
f

z ∈ [0, d]. (23)

It should be noted that, if δ(z) is assumed to be a bounded measurable function, then the
norm of k in C([0, d]) (18) should be replaced by the norm

‖k‖L∞ = esssup0�z,t�d |k(z, t)|.
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3.2. Nonlinear case

Considering the case as �= 0, ac �= 0 and af �= 0 and assuming that δ(z) in (8) is a continuous
function we solve the Volterra equation (8) using the sequence of functions (12).

Denoting

c0 = max
0�z�d

[|δ(z)| + |af ||φ0(z)|2] max
0�z�d

∫ z

0
|K(z − t)| dt (24)

and assuming c0 < 1 we prove the following.

Lemma 1. For every j = 1, 2, . . . , the estimates

‖φj‖ � aj‖φ0‖ (25)

hold with

aj = 1 + c0a
3
j−1 a0 = 1. (26)

Proof. We prove (25) by induction. From (12) and (24), we have, setting j = 1,

|φ1(z)| � ‖φ0‖(1 + c0)

which proves (25) in this case. Now, assume that (25) holds for any j � 1 and prove that it is
valid for j + 1. From (12), (24) and (25), it follows that

|φj+1(z)| � ‖φ0‖ +
∫ z

0
|K(z − t)| [‖δ‖ + |af |‖φ0‖2a2

j

] ‖φ0‖aj dt

� ‖φ0‖ · (
1 + c0a

3
j

) = ‖φ0‖aj+1. (27)

which proves the lemma. �

Lemma 2. For every j = 1, 2, . . . , the estimates

‖φj+1 − φj‖ � c0‖φ0‖ · a3
j (28)

hold, where aj are determined from (26).

Proof. We prove (28) by induction. For j = 0, (28) is satisfied. From (12), we obtain

|φj+2(z) − φj+1(z)| �
∫ z

0
|K(z − t)||φj+1(t) − φj(t)|

[|δ(t)| + |af | (φ2
j+1 + φj+1φj + φ2

j

)]
dt .

(29)

If (28) holds for every j � 0, we use (24) and lemma 1 to find the upper bound of the
right-hand side of (29),

c0‖φ0‖c0a
3
j

(
a2

j+1 + aj+1aj + a2
j

)
. (30)

To complete the proof, it is sufficient to show that

c0a
3
j

(
a2

j+1 + aj+1aj + a2
j

)
�

(
1 + c0a

3
j

)3
. (31)

In order to prove this inequality we choose a c0 that satisfies

c0 � α

(1 + α)3
(32)

for a certain positive α � 1/2. Then, taking into account that aj+1 > aj , we obtain the upper
bound 3c0a

3
j a

2
j+1 for the left-hand side of (31). Condition (32) yields c0 � 4/27 (cf (13)) for

α � 1/2 and aj � 1 + α for every j = 0, 1, 2, . . . . This implies

2c0a
3
j � 1 (33)
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and thus

3c0a
3
j a

2
j+1 � a3

j+1 = (
1 + c0a

3
j

)3
. (34)

The lemma is proved. �

Lemma 3. If c0 satisfies (32) for a certain positive α � 1/2, then sequence (12) converges in
C([0, d]) to a continuous function φf (z) that satisfies equation (8).

Proof. We prove that {φj(z)}, j = 0, 1, 2, . . . , is a Cauchy sequence in C([0, d]). Indeed,

‖φj+p − φj‖ � ‖φj+p − φj+p−1‖ + · · · + ‖φj+1 − φj‖ (35)

holds. We estimate ‖φj+1 − φj‖ for j � 1. In what follows, we will assume that

max
0�t�z�d

{[|δ(z)| + |af ||φ0(z)|2] · |K(z − t)|} � 1. (36)

This inequality is consistent with condition (13) and implies that the norm of function δ(z),
the nonlinearity parameter af and the film thickness d must be taken sufficiently small. Using
induction, we prove the inequality

|φj+1(z) − φj(z)| � ‖φ0‖a3
j

(z)j+1

(j + 1)!
. (37)

For j = 0 it follows from (12) and (36) that

|φ1(z) − φ0(z)| � z‖φ0‖
which coincides with (37) for j = 0 because a0 = 1.

Assuming that (37) holds for every j � 0 we prove that it will be valid for the subsequent
value j + 1. According to lemma 1 and (36), we obtain

|φj+2(z) − φj+1(z)| �
∫ z

0
|K(z − t)| [|δ(t)| + |af | (φ2

j+1 + φj+1φj + φ2
j

)] ‖φ0‖a3
j

tj+1

(j + 1)!
dt

� ‖φ0‖a3
j

(
a2

j+1 + aj+1aj + a2
j

) zj+2

(j + 2)!
�

(
1 + c0a

3
j

)3

c0

zj+2

(j + 2)!
‖φ0‖. (38)

Using inequality (31) we estimate the right-hand side of (38) from above by

‖φ0‖
a3

j+1

c0

zj+2

(j + 2)!

which completes the proof of (37).
Inequality (37) yields an upper bound for the right-hand side of (38):

1

c0
‖φ0‖

(
a3

j d
j+1

(j + 1)!
+ · · · +

a3
j+p−1d

j+p

(j + p)!

)

� dj+1

c0

(1 + α)3

(j + 1)!

(
1 +

d

j + 2
+

d2

(j + 2)(j + 3)
+ · · ·

)
‖φ0‖

� α

c2
0

dj+1

(j + 1)!

‖φ0‖
1 − d/(j + 2)

→ 0 j → ∞. (39)

Thus, lemma 3 is proved. �

It should be noted that the condition c0 � 4
27 imposes, together with (13), (32) and (36),

restrictions on ε̄f (z) and af E2
0 or the layer thickness d.
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4. Existence

To prove the existence of solutions to (3) we first consider a permittivity ε(z) given by (1) with
as = ac = af = 0,

k2
0ε(z) =




ε̄s z < 0
εf (z) 0 � z � d

ε̄c z > d

(40)

with real constants ε̄c,s and εf (z) being a real-valued function continuous on [0, d]. In this
case, if ε̄s = ε̄c, the Helmholtz equation (3) is equivalent to

−φ′′(z) + q(z)φ(z) = λφ (41)

with

q(z) =
{
ε̄c − εf (z) 0 � z � d

0 otherwise
(42)

and λ = ε̄c − n2. As is known [7], equation (41) with a compactly supported potential
q(z) given by (42) has nontrivial solutions (eigenfunctions) at most finitely many negative
eigenvalues λ of the multiplicity one (the number of eigenvalues may be equal to zero).
Assume that, for a given continuous function εf (z), there exists at least one such eigenvalue
λ = λ∗ (according to [8], this holds, for example, if q(z) is not identically zero and q(z) � 0);
this is equivalent to the assumption of the existence of a simple root n = n∗ = √

ε̄c − λ∗ of
the dispersion equation (14) for as = ac = af = 0. Hence

∂F

∂n

∣∣∣∣
n=n∗

�= 0 (43)

holds (for fixed parameters from the set A).
If ε̄s �= ε̄c, the potential q(z) is not a compactly supported function and eigenvalues are

at most finite, each having the finite multiplicity [9]. In what follows, we consider only the
case of simple roots of the dispersion equation (14) (simple eigenvalues) supposing that (43)
is valid.

To analyse the perturbation of roots of the dispersion equation (14) for as = ac = 0 and
af �= 0 due to small variation of the parameter ξ = af we assume that, for a given continuous
function εf (z), there exists at least one simple root n = n∗ of the dispersion equation (14) for
as = ac = af = 0 (one negative eigenvalue λ∗ = ε̄c−(n∗)2 of equation (41) of the multiplicity
one) and consider (14) for fixed ε̄s , ε̄c, ε̄

0
f , aν, E0, d , in the vicinity of n = n∗, ξ = 0. Since

∂F
∂n

(n, ξ) is continuous and{
F(n∗, 0) = 0
∂F
∂n

(n∗, 0) �= 0
(44)

the implicit function theorem [10] yields the unique existence of a continuous function n(ξ)

in a small vicinity of n = n∗, ξ = 0.
To sum up, we have proved the following.

Theorem. Assume that the following conditions are satisfied:

(i) for a given continuous function εf (z) (z ∈ [0, d]) and positive constants ε̄c and ε̄s there
exists at least one eigenvalue of equation (41);

(ii) the function δ(z) = εf (z) − ε̄0
f and a positive constant ε̄0

f are such that the number c0

defined by (24) satisfies the condition c0 < 4/27;
(iii) inequality (36) holds.
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n

a = 0

a = 1/30

af

Figure 1. The relation between af and n for a = 1
30 and 0.

a = 0

a = 1/30

Figure 2. The field patterns inside the film for a = 1
30 and 0.

Then there is a sufficiently small a∗
f > 0 such that for all ξ = af ∈ (0, a∗

f ), there exists a
solution to the Helmholtz equation (3) according to (4), (5) and (12). The corresponding root
n = n(ξ) of the dispersion equation (14) exists and is simple.

One can determine the range of variation of the internal layer thickness d and nonlinearity
parameter ξ = af (in the form of a nonempty domain D in the (d, ξ)-plane) that satisfy
conditions (13), (32) and (36). Indeed, assume that for fixed ε̄ν , aν (ν = s, c), and ε̄0

f

and a (continuous) function εf (z), and ξ ∈ (0, a∗
f ), the corresponding root of equation (14)

n = n(ξ) ∈ (n1, n2), where n1 and n2 are positive. Then we can use (9) and write the estimates

max
0�t�z�d

|K(z − t)| � M0(d) = sinh(Qf d)

Qf

Qf =
√

n2
2 − ε̄0

f > 0 (45)

where M0(d) → 0 as d → 0, and also

max
0�z�d

∫ z

0
|K(z − t)| dt � dM0(d) (46)
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Figure 3. The left-hand side of condition (36) for a = 1/30.

‖φ0‖ � M1(d) M1(d) = E0

[
cosh(Qf d) + M0(d)

√
Q2

s − as

2
E2

0

]
Q2

s = n2
2 − ε̄s .

(47)

Now we can use (47) to estimate from above the quantity c0 given by (24) and write the
inequalities

dM0(d)
[
δ0 + M2

1 (d)|ξ |] < 4
27 (48)

which yields condition (32) with α = 1/2 and

M0(d)
[
δ0 + M2

1 (d)|ξ |] � 1 (49)

which yields condition (36); here δ0 = ‖δ(z)‖. Obviously, for every ξ , there exists a
(sufficiently small) d0 such that the system of inequalities (48) and (49) is satisfied when
d ∈ [0, d0]. The solution to (48) and (49) specifies a nonempty subdomain D′ ⊂ D where
conditions (13), (32) and (36) hold.

A simplified analysis of the solution to the system of inequalities (48) and (49) is given
in the appendix.

5. A numerical example

To illustrate the above analysis we assume a periodic dependence of ε̄f (z) so that δ(z) =
a cos2 bz/d and compare the results with those of ε̄f (z) = ε̄0

f = const.

Choosing the parameters εs = εc = 1, ε̄0
f = 1.5, d = 3, E0 = 1

8 and b = 10 and
evaluating the dispersion equation (14) with the first iteration of (8) we obtain a relation
between af and n for a = 1

30 and a = 0 (figure 1). The corresponding field patterns inside the
film are shown in figure 2.

The difference between the cases δ = 0 and δ �= 0 are small because the conditions c0 < 1
and (36) had to be satisfied for af = 0.2. Figures 3 and 5 show the left-hand side of condition
(36) for a = 1/30 and 0, respectively, both plotted with respect to z and t. Figures 4 and 6
show c0 calculated according to (24) for the same a. One can see that the condition c0 < 1
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c00.12

0.1

0.08

0.06

0.04

0.02

0.5 1.5 2.51 2 3

af

Figure 4. c0 calculated according to (24) versus af for a = 1/30.

Figure 5. The left-hand side of condition (36) for a = 0.

c0

af

Figure 6. c0 calculated according to (24) versus af for a = 0.

is satisfied for the chosen values of a. The field pattern in the entire three-layer structure is
shown in figure 7 (note that we have chosen the plot range such that the asymptotic behaviour
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Figure 7. The field pattern in the entire three-layer structure.

of the fields φs and φc becomes obvious, which implies that the different field patterns in
figure 2 are not visible).

6. Conclusion

The TE-polarized waves defined by (2) (with φ(z) → 0 as |z| → ∞) supported by a lossless
Kerr-like nonlinear three-layer structure modelled by a permittivity function ε(z) according
to (1) have been investigated.

Firstly, we have proved (cf the theorem in section 4) that, subject to certain conditions,
a solution of the Helmholtz equation (3) exists and can be presented in the form of a limit
function φf (z) of a uniformly convergent functional sequence of iterations of (8).

Secondly, we have proved the unique existence of a continuous function n(af ) as a
solution of the dispersion equation (14) (in a small vicinity of n∗, af according to (44)).

Thirdly, we have illustrated the mathematical results by a numerical example. With
respect to possible/expected practical applications the analysis outlined above can be extended
to more general functions ε(z) that model the permittivity in nonlinear photonic crystals [11],
in particular, periodic dependences of the permittivity considered in section 5.
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Appendix

Assume that d � 1. Then (48) implies (49). Consider the solution to the inequality

M0(d)
[
δ0 + M2

1 (d)|ξ |] < 4
27 . (A1)

Denoting v = sinh(Qf d), η = |ξ |E2
0 and � =

√
Q2

s − as

2 E2
0 , we can rewrite (48) as an

inequality in terms of the variables v and η,

G(v) ≡ δ0v + ηv

(
�

Qf

v +
√

1 + v2

)
� 4

27
Qf . (A2)
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Figure 8. The left-hand side of inequality (A1) (vertical axis) plotted versus ξ and d; the parameters
εs = εc = 1, ε̄0

f = 1.5, E0 = 1/8 and δ0 = 1/30 correspond to the numerical example considered
in section 5.

For every fixed ξ,G(v) is a monotonically increasing positive function in every interval [0, V ],
and G(v) → 0 as v → 0. Consequently, for every positive B, there exists a (positive) VB such
that the inequality G(v) � B is satisfied when v ∈ [0, VB]. In addition,

G(v) < G0(v) = η

(
�

Qf

+ 1

)
v2 + (δ0 + η)v

because
√

1 + v2 < 1 + v for positive v. Therefore, all v satisfying the inequality
G0(v) � 4/27Qf ,

0 < v < V0 V0 = V0(η) = (δ0 + η) +
√

(δ0 + η)2 + 4(4/27Qf )2

2
(
η
(

�
Qf

+ 1
)) (A3)

also solve inequality (A2). Thus, (A1) is satisfied and conditions (13), (32) and (36) hold for
all d satisfying

d � min{1, 1/Qf arcsinh V0}. (A4)

A plot in figure 8 illustrates the behaviour of the left-hand side of (A1) for small d and
ξ . One can see that condition (A1) is satisfied, for a chosen set of parameters (see the figure
caption).
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